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The gasket of circles:  
A fractal of circular nature

Fred Haggar & Senida Krcic
Fort Street High School, NSW

f .haggar@optusnet .com .au 
senida .krcic1@det .nsw .edu .au

Subdividing an equilateral triangle into four congruent triangles, then doing 
likewise to each of the three non-central triangles, and then again and 

again, leads to the Sierpinski gasket, from which the chaos game originated. 
An analogous procedure is hereforth applied to a circle, where a subdivision 
consists of two pairs of inscribed circles, with each circle tangential to the ones 
adjacent to it. 

Figure 1

The first subdivision

The first subdivision of the circle Γ: x2 + y2 = 1 consists of the circles at A, B, 
and their reflections along the y-axis, x-axis respectively, as shown in Figure 1. 
All subsequent first subdivisions of circles in the interior of Γ: x2 + y2 = 1 are 
scaled down repetitions of the above. 
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The gasket of circles: A
 fractal of circular nature

Figure 2. The first subdivision of the circle.

Since the circles at A, B are tangential, we have OA2 + OB2 = AB2, hence 
their radii r, s, are related by 

 (1 – r)2 + (1 – s)2 = (r + s)2

simplifying to

 r + s + rs = 1 (1)

Figure 3.
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1

2
, s =

1
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Figure 4. r = s = 2 −1

Let s = 1− r
1+ r

⎛
⎝⎜

⎞
⎠⎟ ≤ r  then r2 – 2r – 1 ≥ 0, hence 

 
2 −1≤ r ≤ 1

2  
(2)

 

1
3
≤ s ≤ 2 −1

 

d
dr

r + s( ) = d
dr

r + 1− r
1+ r

⎛
⎝⎜

⎞
⎠⎟ =

r 2 + 2r −1
1+ r( )2

= 0, r = −1± 2

d
dr

r 2 + s 2( ) = d
dr

r 2 + 1− r
1+ r

⎛
⎝⎜

⎞
⎠⎟

2⎛
⎝⎜

⎞
⎠⎟
=

2 r 2 + r + 2( ) r 2 + 2r −1( )
1+ r( )3

, r = −1± 2

therefore

 
2 2 −1( ) ≤ r + s ≤ 1

2
+ 1

3
= 5

6  
(3)

 
2 2 −1( )2 ≤ r 2 + s 2 ≤ 1

2
⎛
⎝⎜

⎞
⎠⎟

2

+ 1
3

⎛
⎝⎜

⎞
⎠⎟

2

= 13
36  

(4)

where r = s = 2 −1  corresponds to four equal circles, and r = 1
2

, s = 1
3

 to the 
case where the circle at A passes through the origin. 

The combined area of these four circles is S1 = 2p(r2 + s2), and the region 
Ω1 in their exterior has area p – S1 and perimeter 2p + 4p(r + s).

The k-th subdivision

The second subdivision of Γ: x2 + y2 = 1 involves each of the existing circles 
being divided as in the manner of the first subdivision. It consists of 4 circles 
of radius r2, 8 circles of radius rs, and 4 circles of radius s2 with a combined 
area
 S2 = 4p(r4 + 2r2s2 + s4) = 4p(r2 +s2)

2
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The gasket of circles: A
 fractal of circular nature

The region Ω2 in their exterior and the interior of the four circles in the first 
subdivision has area = S1 – S2 and perimeter 4p(r +s) + 8p(r +s)2.

Repetitions of this step lead to the k-th subdivision of Γ with 2k k
i

⎛
⎝⎜

⎞
⎠⎟

 circles 
of radii rk–isi, i = 0, 1… k: 

A total of 2k k
i

⎛
⎝⎜

⎞
⎠⎟i=0

k

∑ = 2k × 2k = 4k  circles of combined area

 

Sk = 2kπ k
i

⎛
⎝⎜

⎞
⎠⎟i=0

k

∑ r 2( )k−i
s 2( )i

= π 2 r 2 + s 2( )( )k

= π S1

S0

⎛
⎝⎜

⎞
⎠⎟

k

, S0 = π
 

(5)

and

 

S1

S0

= 2 r 2 + s 2( ) ≤ 13
18

∴ lim
k→∞

Sk = 0

Their combined perimeter is 

 

Ck = 2k+1π k
i

⎛
⎝⎜

⎞
⎠⎟

r k−is i

i=0

k

∑

= 2π 2 r + s( )( )k

= 2π C1

C0

⎛
⎝⎜

⎞
⎠⎟

k

 

(6)

and
 

C1

C0

= 2 r + s( ) ≥ 4 2 −1( )

hence
 

lim
k→∞

Ck = ∞

By analogy, the corresponding ratio in the Sierpinski gasket is

 

perimeter of 3triangles of side 1
2

perimeter of triangle of side 1
= 3

2

The fractal dimension of a self-similar figure is 

 

D = −
log number of self-similar pieces( )

log scale factor( )

thus for the Sierpinski triangle it is 

 

DT = log3
log2

! 1.585

In the circular gasket, there are two scale factors: r along the x-axis, and s 
along the y-axis, each applied to two circles. 
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Its fractal dimension 

 

DC = − log2
logr

− log2
logs

has boundary values

 

DC = − 2log2
log 2 −1( ) ≈1.573 r = s = 2 −1( )

DC = 1+ log2
log3

≈1.631 r = 1
2

, s = 1
3

⎛
⎝⎜

⎞
⎠⎟

corresponding to r = s = 2 −1  and r = 1
2

, s = 1
3

 respectively, and DC = DT if (r, 
s) ≈ (0.454, 0.376). 

Locating the circles

Locating the 4k circles in the k-th subdivision of Γ is no easy task: consider the   
1024 circles for k = 5!

The workload is vastly reduced by allocating these circles to k + 1 classes, say 
i = 0, 1… k, according to some criteria as follows:
A circle at (Xk–i, i, Yk–i, i) of radius risk–i generates two circles at  
(Xk–i, i, ± (1 – r)risk–i, Yk–i, i) of radii ri+1sk–i along the x-direction and two circles 
at (Xk–i, i, Yk–i, i ± (1 – s)risk–i,) of radii risk–i+1 along the y-direction. 

Figure 5.
 
r =

1

2
, s =

1

3
, k = 1, 2, 3
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The gasket of circles: A
 fractal of circular nature

For simplicity, let 

 (Xk–i, i, Yk–i, i) = ((1 – r)uk–i, i, (1 – s)vk–i, i) (7) 

where k – i, i represents the number of terms in uk–i, i, vk–i, i respectively, 
equivalently the number of iterations in the x, y-directions respectively.  

Similarly to the random walk, where each term represents a constant shift 
in either the horizontal or vertical direction, starting from (0, 0), each term 
in uk–i, i, vk–i, i represents a shift by a factor of either r or s of its predecessor, or 
the radius of a circle in the preceding subdivision. We have:

 

k = 1: u10,v10( ) = ±1,0( )
u01,v01( ) = 0,±1( )

k = 2 : u20,v20( ) = ±1 ± r ,0( )
u02,v02( ) = 0,±1 ± s( )
u11,v11( ) = ±1, ± r( ), ±s,±1( )

k = 3 : u30,v30( ) = ±1 ± r ± r 2,0( )
u03,v03( ) = 0,±1 ± s ± s 2( )
u21,v21( ) = ±s ± rs, ±1( ), ±1 ± rs, ± r( ), ±1 ± r , ± r 2( )
u12,v12( ) = ±1, ± r ± rs( ), ±s, ±1 ± rs( ), ±s 2, ±1 ± s( )

k = 4: u40,v40( ) = ±1 ± r ± r 2 ± r 3,0( )
u04 ,v04( ) = 0,±1 ± s ± s 2 ± s3( )
u31,v31( ) = ±s ± rs ± r 2s,±1( ), ±1 ± rs ± r 2s, ± r( ),

±1 ± r ± r 2s, ± r 2( ), ±1 ± r ± r 2, ± r 3( )
u13,v13( ) = ±1,± r ± rs ± rs 2( ), ±s, ±1 ± rs ± rs 2( ),

±s 2, ±1 ± s ± rs 2( ), ±s3, ±1 ± s ± s 2( )
u22,v22( ) = ±s ± rs,±1± r 2s( ), ±1 ± rs,±r ± r 2s( ), ±1 ± r ,±r 2 ± r 2s( ),

±1 ± rs 2,± r ± rs( ), ±s ± rs 2,±1± rs( ), ±s 2 ± rs 2,±1± s( )

Thus, given (uk–i, i, vk–i, i), two new centres at (Xk–i+1, i, Yk–i+1, i) and two centres 
at (Xk–i, i+1, Yk–i, i+1) are defined recursively by

 uk–i+1, i = uk–i, i ± rk–isi (8a)
 vk–i+1, i = vk–i, i

and
 uk–i, i+1 = uk–i, i (8b)
 vk–i, i+1 = vk–i, i ± rk–isi
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Equations (8a) and (8b) satisfy the relations

 

uk−i ,i = !vi ,k−i

vk−i ,i = !ui ,k−i
 

(9)

where the tilde ~ denotes the interchange (r, s) → (s, r), reducing the number 
of computations by half. 
It is sufficient to apply (8a) with 

 
i = 0, 1… k

2
⎡
⎣⎢

⎤
⎦⎥

and (8b) with 

 
i = 0, 1… k −1

2
⎡
⎣⎢

⎤
⎦⎥

and then (9) with 

 
i = k +1

2
⎡
⎣⎢

⎤
⎦⎥
,

k +3
2

⎡
⎣⎢

⎤
⎦⎥
…k

where [] denotes the greatest integer less than or equal to, in order to generate 
a complete set of circles in the (k + 1)-th subdivision. 

In particular, if k is odd then half the centres in the (k + 1)-th subdivision, 
corresponding to

 
i = k − i +1= k +1

2

are defined by 

 

uk+1
2

,
k+1
2

, vk+1
2

,
k+1
2

⎛

⎝⎜
⎞

⎠⎟

as in (8b) with i = k −1
2

, and the remaining by

 

!vk+1
2

,
k+1
2

, !uk+1
2

,
k+1
2

⎛

⎝⎜
⎞

⎠⎟

These 
k +1
k +1

2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

2k+1  circles of radii = rs( )
k+1
2  are in a class of their own as they 

  
are reached from (0, 0) by equal numbers of horizontal and vertical shifts. 

The case r = s

Let (ci0, ci1… ci, k–i–1), (c'i0, c'i1… c'i, i–1) be two mutually exclusive ordered 
permutations of k – i, i elements from the set {0, 1… k – 1}. There are k

i( ) 
such pairs of sets, and each of these define 2k–i × 2i = 2k centres in the k-th 
subdivision of Γ: x2 + y2 = 1 by 
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The gasket of circles: A
 fractal of circular nature

 

uk−i ,i = εijr
cij , εij = ±1, r = 2 −1

j=0

k−i−1

∑

vk−i ,i = ε 'ij
j=0

i−1

∑ r
cij ' , ε 'ij = ±1

 

(10)

The cij (or c'ij) are solutions of the partition equations 

 
cij = j +n

j=0

k−i−1

∑ = k − i( ) k − i −1( )
2

+n,
j=0

k−i−1

∑ n = 0,1…i k − i( )
 

(11)

 0 ≤ ci 0 < ci1…< ci ,k−i−1 ≤ k −1

Equivalently

 
c 'ij = j −n

j=k−i

k−1

∑ = i 2k − i −1( )
2

−n
j=0

i−1

∑
 

(12)

 0 ≤ c 'i 0 < c 'i1 ... < c 'i ,i−1 ≤ k −1

There are k
i( ) solutions as n runs through 0, 1… i(k – i).

Also, since the cij, c'ij are distinct, any power of r is in either uk–i, i or vk–i, i, but 
not both, hence 

 
Xk−i ,i +Yk−i ,i = 1− r( ) ε jr

j , ε j = ±1
j=0

k−1

∑ , ∀i

 
∴ Xk−i ,i +Yk−i ,i ≥ 1− r( ) 1− r j

j=1

k−1

∑
⎛

⎝
⎜

⎞

⎠
⎟ = 1− 2r + r k

 
(13)

 
Xk−i ,i +Yk−i ,i ≤ 1− r( ) r j = 1− r k

j=0

k−1

∑
 

(14)

where 1 – rk is the distance covered from (0, 0) to any centre (Xk–i, i, Yk–i, i) by 
a combined total of k horizontal and vertical shifts. 

The lines y = ± 2 ±1( )x
These lines divide the circle Γ: x2 + y2 = 1 into eight equal parts. In order that 
a centre be on either of the lines y = ±rx, y = ± x

r , r = 2  – 1 it is necessary and 
sufficient that (uk–i, i, vk–i, i) have the same number of terms, i.e., k – i = i = 

k
2  

for even k, and that 

 

c k
2

, j
,c 'k

2
, j

⎛

⎝⎜
⎞

⎠⎟
= 2 j , 2 j +1( ), j = 0, 1…k

2
−1

by substituting (10) in y = ±rx, or

 

c k
2

, j
,c 'k

2
, j

⎛

⎝⎜
⎞

⎠⎟
= 2 j +1, 2 j( )

by substituting (10) in y = ± x
r .
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Hence the centres

 

X k
2

,
k
2

,Yk
2

,
k
2

⎛

⎝⎜
⎞

⎠⎟
= 1− r , ± r 1− r( )( ) ε jr

2 j , ε j = ±1
j=0

k
2
−1

∑

are on the lines y = ±rx respectively, and the centres

 

X k
2

,
k
2

,Yk
2

,
k
2

⎛

⎝⎜
⎞

⎠⎟
= r 1− r( ), ± 1− r( )( ) ε jr

2 j

j=0

k
2
−1

∑

are on the lines y = ± x
r  respectively. There are 2

k
2  circles of radii = rk on each 

of these four lines, adding to the visual appeal of the gasket of circles. 

Many questions can be asked such as:
•	 Is a line passing through a circular gasket comprising all subdivisions of Γ, 

up to the k-th, tangential to at most 2k circles in the gasket?
•	 How many colours are required to colour in the gasket in Figure 4 so as no 

two adjacent sub-regions have the same colour?

H
ag

ga
r 

&
 K

rc
ic

A
us

tr
al

ia
n 

S
en

io
r 

M
at

he
m

at
ic

s 
Jo

ur
na

l v
ol

. 
3

1
 n

o.
 2

30




