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Overview

» The modelling process
» Modelling using mathematical optimisation

» Using maths to gain insight into data

I, ©



The modelling process

@



The modelling process

Task
Recognition and definition of
the real problem
Mathematical

MOde"mg Formulation of the
mathematical problem
Dat
a a Collection of data
Modelling
So_lve: Optimisation of the model
Algorithms +
Computation , ,
Analysis of solution

Fragni, E., & Gondzio, J. (1999). Optimization modeling languages.

It is necessary
to separate

» model

» data

> solving




Modelling using
mathematical optimisation
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Optimisation: make optimal
decisions

e Examples:
® \Vhich way"”?
® [ind the shortest path between two points in a network.
® How many?
® Allocate the best people to the right job.

® \\here do we focus?

® Communicate with the most appropriate demographic.
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Optimisation problems in
power systems

®\\Vhich way”?
® unit commitment - minimise cost of generating power

® optimal power flow - while considering real-world operations
and physics

® How many?
® nfrastructure investment planning - maximise welfare
®\\Vhere do we focus?

® state estimation - find most likely state of a system (e.g. a grid)
to explain a set of measurements subject to measurement error
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Decisions Objective Value
> (benefit or cost)
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Why mathematical
optimisation?
® |Vithout structure, the best approach to solve an
optimisation problem is to enumerate all candidate solutions
® cvaluate, score, compare, pick best

® |Vith - mathematical - structure, things can ‘simplify’ a lot
and apply specialised algorithms

® \\Vhen we are precise, we can reason
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Optimisation problems
(in the abstract)

® minimise cost (function) L
objective
® subject to
® mathematical models for entities
® |aws of physics
® safe operation constraint set:

Describe the situation using
® financial budgets equations and inequalities
® resource constraints using linear and nonlinear

functions
® technological envelopes .

I, ©



Mathematical structure

® linear Ar = b

® polynomial x® + 92 + 27 — 2eyr — 1 =10
® set membership S S?_

® integer T € {()’ 1}

® |ogical conditions (z>2Ay=1)V(x <y <2)
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Mathematical optimisation

min  f(x)
s.t.  gi(z) <0
hj(z) =0
® decision variables (vector): r e R"

® functions (vector operations): [, g, hj :R" - R
® [heir nature and type Is fundamentally important

® [he number of constraints and variables is typically a finite
set: e {l,....,m},j€{l,..., I}
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Example: the National Electricity Market

3 * "Big question”:

e What is the best set of
representative lines to make
a network “backbone’?

e ® Sefts

e [he set of connected
locations in the network
(electricity transmission
substations).

* The set of all possible lines
between the connected
locations.
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Example: the National Electricity Market

 Objective:

* Minimise the total length of
the network.

- o (Constraints

 The network must be joined
up i.e. not disconnected.

* We must always join a
special set of “reference
nodes”

15



Mathematical model

. . B min Z 67;7]'337;’]'
 The mathematical structure Is T ieE
understood through st > wig= Y mp VieV\{ln}
(iaj)EE (J?k)EE
» sets and indices (tuples) > @i =
(i,n)EE

e parameters (given data)
e variables (solve for these)

e constraints (equations and
inequalities)

* Objective functions (the goal)
Dunning, |., Huchette, J., & Lubin, M. (2015).

JuMP: a modeling language for
mathematical optimization, 1-21. Retrieved

16 from http://arxiv.org/abs/1508.01982


http://arxiv.org/abs/1508.01982

Mathematical model of a

flow problem

 Minimum cost flow problem

* over a network graph
G = (V, E) = (vertices, edges) m

e V=1{1,2, ...n} (vertices)

e Flow source at vertex 1

e Flow sink at vertex n

Dunning, |., Huchette, J., & Lubin, M. (2015).
JuMP: a modeling language for
mathematical optimization, 1-21. Retrieved

17 from http://arxiv.org/abs/1508.01982


http://arxiv.org/abs/1508.01982

Using maths to gain insight
Into data
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The modelling process

Task
Recognition and definition of
the real problem
Mathematical

MOde"mg Formulation of the
mathematical problem
Dat
a a Collection of data
Modelling
So_lve: Optimisation of the model
Algorithms +
Computation , ,
Analysis of solution

Fragni, E., & Gondzio, J. (1999). Optimization modeling languages.

It is necessary
to separate

» model

» data

> solving




Electricity demand

TOTAL DEMAND, VICTORIA, APRIL 2019
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Source:
-market-nem/data-nem



https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard#aggregated-data

Load Duration Curves (LDCs)

SORTED TOTAL DEMAND, VICTORIA, APRIL 2019
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Load Duration Curves (LDCs)

TOTAL DEMAND, VICTORIA, APRIL 2019

©
| e
©
(S
Q
o
S
-
E
X
(1°)
=
[P
o
X

40 50 60
% of time in month




AEMO Market Modelling Methodologies

Figure 8 A load duration curve partitioned into five load blocks
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Source: AEMO - Market Modelling Methodologies (July 2018) report
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AEMO Market Modelling
Methodologies, page 17...

“The regional demand time series fed into the DLT is fitted with a
step function so that the total number of simulation periods per
day is reduced from twenty-four hours to an appropriate number
of load blocks. These load blocks are created using a weighted
least-square fit method which performs an optimisation that
minimises the sum of squared errors (i.e. the square of the
difference between the hourly demand fed into the model and the
step function approximation). The weighted least square approach
has the advantage of fitting the step function more tightly to the
original demand time series — allocating more blocks to higher
load periods and less to periods of low demand. The duration of
each block can therefore vary depending on how the underlying
Intervals are grouped together. ©
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Global electricity generation by technology
2 degrees scenario (GenCost report)
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Learning curves

/ } Cumulative
Cost

Cost ‘ /
.. / F(x) = Jf(x) dx
L

Uni:t
Cost

i 11) f(aj) — ZE_b

i

Cumulative experience
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Notice that in the case of learning curves,
the vertical spacing is uniform.




The unsure learning curve
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Defining the problem

What is the optimal choice of breakpoints or knots
within an interval |xin, Tmax] fOr constructing a
piecewise-linear approximation to any given function?

For a given fixed N, how do we chose the N knots
Lmin <t1 §t2 StN < Tmax

that achieves a piecewise-linear interpolation that is
‘as close as possible’?
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An excellent guide to
linear approximation

de Boor, C., Good approximation by splines with variable knots, ISNM Vol.21,
Spline functions and Approximation Theory, Birkhauser Verlag, Basel, 1973, 57-72.

We can best approximate a function f by linear
pieces if we choose the N knots

xmin:t0<t1StQ"'StN<tN—|—1:$maX

so as to make each integral

/ JIf (@)lda

(approximately) the same for each i.
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An excellent guide to
step approximation

de Boor, C., Good approximation by splines with variable knots, ISNM Vol.21,
Spline functions and Approximation Theory, Birkhauser Verlag, Basel, 1973, 57-72.

We can best approximate a function f by linear
pieces if we choose the N knots

xmin:t0<t1StQ"'StN<tN—|—1:$maX

so as to make each integral

[

7

(approximately) the same for each i.
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Solve this equation

xmin:tO <tl StQ StN <tN—I—l — L'max
de Boor, C., Good approximation by splines with variable knots, ISNM Vol.21,
Spline functions and Approximation Theory, Birkhauser Verlag, Basel, 1973, 57-72.

For best-approximating step functions:

tit1 1 tN+1
[ r@lar= g [ @

7

For best-approximating piecewise linear functions:

tit1 1 tN+1

7 dr —
V- 1 |
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Discrete data

On a discrete data set

(QZ‘Q, f($0))7 (5131, f(ajl))7 (va f($2))7 SR (xMa f(xM))

with the same spacing between points of size
h =41 —

we can to use a version of the second derivative called
the second-order central difference:

£ (25) ~ f(Tiv1) — 2];52%) + f(wi-1)
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Discrete data

On a discrete data set

(an f($0))7 (331, f(ajl))7 (va f($2))7 SR (xMa f(xM))

with the same spacing between points of size
h =41 —

we can to use a version of the integral called a sum (!)

b M
[ gts)as =3 gl
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Putting it together

On a discrete data set

(3707 f(ZUO))? (513‘1, f(xl))v (2132, f($2)), SRR ('CEMv f(xM))

with the same spacing between points of size

h=wziy —x
choose the knots

mmin:tO <t1 §t2 StN <t]\f—l—l — L'max
so that for every index : the value

o VI (@) de = Y/ fwia) — 2f () + fzio)

i

IS the same, where the sum Is taken over a subset of
the data points {z;} between ¢; and t;...
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Electricity demand

TOTAL DEMAND, VICTORIA, APRIL 2019
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Source:
-market-nem/data-nem



https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard#aggregated-data

Load Duration Curves (LDCs)

SORTED TOTAL DEMAND, VICTORIA, APRIL 2019
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Load Duration Curves (LDCs)

TOTAL DEMAND, VICTORIA, APRIL 2019
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Average Daily Demand
(VIC, April 2019, half-hour mean)

Average Daily Chronological Demand
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Operational Demand (GW)
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Demonstration: N=1

Average Daily Chronological Demand
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Demonstration: N=2

Average Daily Chronological Demand
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Demonstration: N=5

Average Daily Chronological Demand
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Demonstration: N=10

See LDC_plots_ AAMT.xIsx

Average Daily Chronological Demand
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Load Duration Curve
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