contents and sample pages

<table>
<thead>
<tr>
<th>Title</th>
<th>The Case of the Mystery Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Doug Clarke</td>
</tr>
<tr>
<td>ISBN/ISSN</td>
<td>978-0-958662-05-5</td>
</tr>
<tr>
<td>Published by</td>
<td>MANSW Inc.</td>
</tr>
</tbody>
</table>

This document is copyright and has been made available with permission. Please contact the Australian Association of Mathematics Teachers to purchase this product.

AAMT is the nation’s premier organisation of mathematics educators: supporting and enhancing the work of teachers; promoting the learning of mathematics; representing and promoting interests in mathematics education.
Table of Contents

Overview
Major mathematical content in this unit
Goals for this unit
Hints from other teachers
Overview of the unit — section by section
Equipment and resources for this unit
Discussion of core and optional material within the unit
Some assessment options for this unit
Acknowledgements

Student material with accompanying teacher’s notes
A. Using Mathematics in Detective Work ... T1
B. Making and Testing Some Predictions ... T5
C. Skeletons ... T7
D. Children’s Pictures .. T9
E. Body Rectangles ... T11
F. Skinside Out: Ways to Find Your Surface Area T13
G. Surface Area and Medicine ... T15
H. Looking at What We’ve Learnt About Surface Area........................ T21
I. Whose Bones Are Those? ... T23

Additional material
Student Activity Sheets 1–4 .. 25

Some Extended Assessment Tasks
1. Ear Ear!! .. 30
2. How Much Does Your School Grow? .. 30
3. The Most Famous Hand in Australia ... 31
4. Big Foot ... 32
5. Sample Test ... 34
A. Using mathematics in detective work

Imagine that you are a forensic scientist and that you open your morning paper to find the following story.

1. Discuss with a partner which part of the body the radius might be. If no one seems to know which bone it is, check in a science textbook or the dictionary. Draw a quick sketch in your workbook to show which bone it is.

2. Take the measurements in centimetres of the radius bone and height for at least five people in your class.

3. Do you see any sort of pattern or relationship between a person’s height and the length of his or her radius bone?

4. Use any patterns you found to make a first prediction about the height of the mystery person whose bone was found.

Bone Puzzle Baffles Detectives
Jacinta Garcia

Detectives have found a bone buried in a hole on the banks of Lake Kegonsa in Stoughton. Forensic anthropologists have established that the bone is a radius bone, and that it certainly belongs to a human being. The bone measured 28 cm long.

Police don’t know the gender of the person yet. The detectives hope soon to provide a clearer picture of what this person may have looked like.

Investigations are continuing.
Solutions and Samples of Student Work

5. This will provide a good source of discussion, and a combined list could be written on the board at some stage. Possible answers include:
 • Not taking care that one end of the tape is exactly on zero.
 • They might be wearing shoes one time, and not the next.
 • Not having the tape taut.
 • One person ‘flattens’ the subject’s hair before measuring.
 • Measuring to different levels of precision (e.g., cm v. mm).

6. and 7. These questions invite two approaches:
 • to measure a range of tibias and make another prediction;
 • to measure the tibias of girls only, and consider what they predict about a person’s height.

(Hint: Either approach is fine.)

Hints and Comments

Once again, the form and sophistication of conclusions will vary, and that is fine too. The discussion will give each group the chance to share their findings, and learn from each other.

One group of students concluded that the height was $2 \times \text{radius} + 2 \times \text{tibia}$! (In fact, forensic anthropologists use rules just like this:

$1.35 \times \text{humerus} + 1.95 \times \text{tibia} + 52.77$ for height).