Complete these proofs, putting in the reasons and missing angles. Mark the equal angles and sides you find on the diagram as you go.

1. **Given:** \(BC = DC; AB \perp BC \text{ and } CD \perp DA\)
 Aim: To prove \(\triangle ABC \cong \triangle ADC\)
 Proof:
 In \(\triangle ABC \text{ and } \triangle ADC\)
 1. \(\angle B = \angle D = 90^\circ\)
 (given)
 2. \(AC\) is common
 (given)
 3. \(BC = DC\)
 \(\therefore \triangle ABC \cong \triangle ADC\)
 (R H S)

2. **Given:** \(ABCD\) is a rectangle
 Aim: To prove \(\triangle ABC \cong \triangle ADC\)
 Proof:
 In \(\triangle ABC \text{ and } \triangle ADC\)
 1. \(AB = DC\)
 (opposite sides rectangle)
 2. \(AD = BC\)
 (as above)
 3. \(AC\)
 \(\therefore \triangle ABC \cong \triangle ADC\)
 (S S S)

3. **Given:** \(AB \parallel DC \text{ and } BP = PD\)
 Aim: To prove \(\triangle ABP \cong \triangle CDP\)
 Proof:
 In \(\triangle ABP \text{ and } \triangle CDP\)
 1. \(\angle A = \angle C\)
 (alternate angles; \(AB \parallel CD\))
 2. \(\angle APB = \angle DPC\)
 (vertically opposite)
 3. \(BP = PD\)
 (given)
 \(\therefore \triangle ABP \cong \triangle CDP\)
 (A A S)
4. Aim: To prove $BD = DC$

Proof:
In $\triangle ABD$ and $\triangle ACD$
1. $\angle ADC = \angle ADB = 90^\circ$ (given)
2. $AB = AC$ (given)
3. $AD = AD$ (common)
 $\therefore \triangle ABD \equiv \triangle ACD$ (RHS)
 $\therefore BD = CD$ (matching sides of congruent Ds)

You cannot use the property of AD bisecting BC, as this is the goal of the question!

5. Aim: To prove $PQ \parallel ST$

Proof:
In $\triangle PQR$ and $\triangle STR$
1. $PR = RT$ (given)
2. $\angle PRQ = \angle SRT$ (vertically opposite)
 $QR = RS$ (given)
 $\therefore \triangle PQR \equiv \triangle TSR$ (SAS)
 $\therefore \angle PQR = \angle RST$ (matching angles of congruent Ds)
 But these are alternate angles
 $\therefore PQ \parallel ST$ (alternate angles are equal)

6. Aim: To prove $\angle B = \angle D$

Proof:
In $\triangle ABC$ and $\triangle ADC$
1. $DC = AB$ (given)
2. $\angle BAC = \angle ACD$ (alternate angles; $AB \parallel CD$)
3. AC is common
 $\therefore \triangle ABC \equiv \triangle ADC$ (SAS)
 $\therefore \angle B = \angle D$ (matching angles of congruent Ds)
7. Given: \(PQRS \) is a parallelogram. \(PT = RU \).
Aim: To prove \(TS = QU \)

In \(\triangle PTS \) and \(\triangle RUQ \)
1. \(PT = UR \) (given)
2. \(\angle TPS = \angle QRS \) (opp. angles parallelogram)
3. \(PS = QR \) (opp. sides parallelogram)
\(\triangle PTS \equiv \triangle RUQ \) (SAS)
\(\therefore TS = QU \) (matching sides of cong. triangles)

8. Given: \(ABCD \) is a square. \(BH \perp AP \) and \(DK \perp AP \).
Aim: To prove \(AH = DK \)

Proof:
In \(\triangle ABH \) and \(\triangle ADK \)
1. \(\angle AHB = \angle AKD = 90^\circ \) (given)
2. \(\angle HAB + \angle ABH + \angle AHB = 180^\circ \) (angle sum \(\triangle AHB \))
\(\therefore \angle ABH = 90^\circ - \angle HAB \)
 But \(\angle DAK = 90^\circ - \angle HAB \)
 (\(\angle DAB = 90^\circ \), \(ABCD \) is a square)
\(\therefore \angle ABH = \angle DAK \)
3. \(AB = AD \) (sides of a square)
\(\therefore \triangle ABH \equiv \triangle DAK \) (AAS)
\(\therefore AH = DK \) (matching sides of cong. triangles)

9. Given: \(ABCD \) and \(AEFG \) are both squares.
Aim: To prove \(BE = DG \)

Let \(x = \angle EAB \)
\(\therefore \angle BAG = 90^\circ - x \) (\(\angle EAG = 90^\circ \), square \(EAGF \))
\(\therefore \angle GAD = 90^\circ - (90^\circ - x) = x \)
 (\(\angle BAD = 90^\circ \), square \(ABCD \))
In \(\triangle AEB \) and \(\triangle AGD \)
1. \(AB = AD \) (sides of square \(ABCD \))
2. \(\angle EAB = \angle GAD \) (see above)
3. \(AE = AG \) (sides of square \(AEFG \))
\(\triangle AEB \equiv \triangle AGD \) (SAS)
\(\therefore BE = DG \) (matching sides of cong. triangles)