National Mathematics Day Activity

<table>
<thead>
<tr>
<th>Title of activity</th>
<th>Mary, Queen of Scots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>The Australian Association of Mathematics Teachers (AAMT) Inc.</td>
</tr>
<tr>
<td>Copyright owner</td>
<td>The Australian Association of Mathematics Teachers (AAMT) Inc.</td>
</tr>
<tr>
<td>Year of publication</td>
<td>2012</td>
</tr>
</tbody>
</table>

This document is protected by copyright and is reproduced in this format with permission of the copyright owner(s); it may be copied and communicated for non-commercial educational purposes provided all acknowledgements associated with the material are retained.

Each cipher and code activity has a suggested level: lower primary, upper primary or junior secondary. However, many of the activities can be enjoyed by students (and teachers!) of all ages.

For more information about this resource, please contact:

![AAMT Logo]

The Australian Association of Mathematics Teachers Inc.
ADDRESS GPO Box 1729, Adelaide SA 5001
PHONE +61 8 8363 0288
FAX +61 8 8362 9288
EMAIL office@aamt.edu.au
INTERNET www.aamt.edu.au
Mary, Queen of Scots

Cryptography was used by political rulers in 16th century Europe to send coded messages. Mary, Queen of Scots (1542–1587) employed a cipher secretary handle her ‘secret’ correspondence in an attempt to communicate with her supporters while she was imprisoned in England.

Anthony Babington, a young Catholic rebel, wanted Mary, Queen of Scots, to bless his plan to assassinate the regent, Queen Elizabeth. Sending messages to each other using a substitution cipher was to be their downfall. Mary was found guilty of treason and beheaded. Babington was also executed. This was known as the Babington Plot.

In this cipher, the letters are substituted for symbols.

\[
\begin{align*}
\text{A} & \rightarrow \text{a} \\
\text{B} & \rightarrow \text{b} \\
\text{C} & \rightarrow \text{c} \\
\text{D} & \rightarrow \text{d} \\
\text{E} & \rightarrow \text{e} \\
\text{F} & \rightarrow \text{f} \\
\text{G} & \rightarrow \text{g} \\
\text{H} & \rightarrow \text{h} \\
\text{I} & \rightarrow \text{i} \\
\text{J} & \rightarrow \text{j} \\
\text{K} & \rightarrow \text{k} \\
\text{L} & \rightarrow \text{l} \\
\text{M} & \rightarrow \text{m} \\
\text{N} & \rightarrow \text{n} \\
\text{O} & \rightarrow \text{o} \\
\text{P} & \rightarrow \text{p} \\
\text{Q} & \rightarrow \text{q} \\
\text{R} & \rightarrow \text{r} \\
\text{S} & \rightarrow \text{s} \\
\text{T} & \rightarrow \text{t} \\
\text{U} & \rightarrow \text{u} \\
\text{V} & \rightarrow \text{v} \\
\text{W} & \rightarrow \text{w} \\
\text{X} & \rightarrow \text{x} \\
\text{Y} & \rightarrow \text{y} \\
\text{Z} & \rightarrow \text{z}
\end{align*}
\]

- What does this message say?

\[
\text{S V n i E i V A}
\]

- How would this word look if it were written using the cipher of Mary, Queen of Scots?

Sovereign

- Can you write your own message using Mary’s cipher?
- Produce your own version of a substitution cipher.